Forklog
2022-05-02 11:30:06

DeepMind представила визуальную языковую модель с 80 млрд параметров

ИИ-лаборатория DeepMind разработала семейство моделей Flamingo, выполняющих больший объем работы с менее дорогостоящим и трудоемким обучением. Introducing Flamingo 🦩: a generalist visual language model that can rapidly adapt its behaviour given just a handful of examples. Out of the box, it's also capable of rich visual dialog. Read more: https://t.co/xEzqTizoJQ 1/ pic.twitter.com/GjlnDzbyOQ— DeepMind (@DeepMind) April 28, 2022 Модель предназначена для комбинирования ввода текста и изображения, чтобы получить только текстовый ответ. Flamingo обучили на специальном датасете, созданном для мультимодальных исследований машинного обучения. Набор состоит из 185 млн изображений и 182 Гб текста, полученных из общедоступного интернета. Одним из компонентов Flamingo является предварительно обученная языковая модель Chinchilla LM с 70 млрд параметров. DeepMind «объединил» алгоритм с элементами визуального обучения. Также инженеры добавили «промежуточные компоненты новой архитектуры», которые сохраняют данные изолированными и замороженными, давая им 80-миллиардный параметр Flamingo VLM. «Одна модель Flamingo может достигать самых высоких результатов в широком спектре задач, конкурируя с подходами, требующими точной настройки для конкретной задачи на большем количестве примеров», — заявили разработчики. По словам представителей организации, Flamingo превосходит предыдущие подходы к обучению с использованием нескольких шагов. Также модель оказалась эффективнее точно настроенных алгоритмов, использующих большее количество данных. В перспективе Flamingo может уменьшить количество потребляемой энергии при обучении ИИ и снизить потребность в высокопроизводительном оборудовании. Однако в компании не раскрыли деталей, за счет чего они добились таких результатов. Разработчики подчеркнули, что Flamingo можно быстро адаптировать к условиям с ограниченными ресурсами и для задач с низким уровнем ресурсов вроде оценки предвзятости ИИ. Напомним, в апреле DeepMind представила языковую модель Chinchilla с 70 млрд параметров. В феврале британская ИИ-лаборатория показала инструмент AlphaCode, который самостоятельно умеет писать код. В декабре 2021 года DeepMind разработала большую языковую модель Gopher, содержащую 280 млрд параметров. Подписывайтесь на новости ForkLog в Telegram: ForkLog AI — все новости из мира ИИ!

Holen Sie sich Crypto Newsletter
Lesen Sie den Haftungsausschluss : Alle hierin bereitgestellten Inhalte unserer Website, Hyperlinks, zugehörige Anwendungen, Foren, Blogs, Social-Media-Konten und andere Plattformen („Website“) dienen ausschließlich Ihrer allgemeinen Information und werden aus Quellen Dritter bezogen. Wir geben keinerlei Garantien in Bezug auf unseren Inhalt, einschließlich, aber nicht beschränkt auf Genauigkeit und Aktualität. Kein Teil der Inhalte, die wir zur Verfügung stellen, stellt Finanzberatung, Rechtsberatung oder eine andere Form der Beratung dar, die für Ihr spezifisches Vertrauen zu irgendeinem Zweck bestimmt ist. Die Verwendung oder das Vertrauen in unsere Inhalte erfolgt ausschließlich auf eigenes Risiko und Ermessen. Sie sollten Ihre eigenen Untersuchungen durchführen, unsere Inhalte prüfen, analysieren und überprüfen, bevor Sie sich darauf verlassen. Der Handel ist eine sehr riskante Aktivität, die zu erheblichen Verlusten führen kann. Konsultieren Sie daher Ihren Finanzberater, bevor Sie eine Entscheidung treffen. Kein Inhalt unserer Website ist als Aufforderung oder Angebot zu verstehen