Forklog
2022-02-18 09:59:21

Инженеры ускорили обучение нейросетей на CPU более чем в два раза

Израильский ИИ-стартап Deci объявил о достижении «прорывной производительности глубокого обучения» с использованием центральных процессоров (CPU).  The news is out! 🎉 We’re excited to announce that our family of image classification models called DeciNets reached a new level of industry-leading performance on large CPUs including Intel’s Cascade Lake. /1 pic.twitter.com/aCKGBDFpGo— Deci AI (@deci_ai) February 16, 2022 По словам представителей компании, модель классификации изображений DeciNets оптимизирована для использования на процессорах Intel Cascade Lake. Она использует запатентованную Deci технологию Automated Neural Architecture Construction (AutoNAC) и работает на CPU более чем в два раза быстрее и точнее, чем EfficientNets от Google на аналогичном оборудовании. Сравнение скорости обучения моделей на разном оборудовании. Данные: Deci. Соучредитель и генеральный директор Deci Йонатан Гейфман заявил, что их цель разрабатывать не только более точные модели, но и ресурсоэффективные. «AutoNAC создает лучшие на сегодняшний день модели компьютерного зрения, и теперь новый класс сетей DeciNet можно применять и эффективно запускать приложения ИИ на процессорах», — добавил он. В компании также сообщили, что уже почти год работают с Intel над оптимизацией глубокого обучения на процессорах корпорации. Несколько клиентов Deci уже внедрили его технологию AutoNAC в производственных отраслях, добавили они. Классификация изображений и распознавание объектов входят в число основных задач, для которых применяются алгоритмы глубокого обучения. По словам экспертов, сокращение разрыва производительности между GPU и CPU поможет не только удешевить разработку современных ИИ-алгоритмов, но и снизить нагрузку на рынок видеоускорителей. Напомним, в апреле 2021 года ученые из Университета Райса разработали новый механизм глубокого обучения, который тренирует нейронные сети на центральном процессоре в 4—15 раз быстрее, чем на GPU. В мае ученые с помощью ИИ ускорили моделирование Вселенной в 1000 раз. Подписывайтесь на новости ForkLog в Telegram: ForkLog AI — все новости из мира ИИ!

Get Crypto Newsletter
Read the Disclaimer : All content provided herein our website, hyperlinked sites, associated applications, forums, blogs, social media accounts and other platforms (“Site”) is for your general information only, procured from third party sources. We make no warranties of any kind in relation to our content, including but not limited to accuracy and updatedness. No part of the content that we provide constitutes financial advice, legal advice or any other form of advice meant for your specific reliance for any purpose. Any use or reliance on our content is solely at your own risk and discretion. You should conduct your own research, review, analyse and verify our content before relying on them. Trading is a highly risky activity that can lead to major losses, please therefore consult your financial advisor before making any decision. No content on our Site is meant to be a solicitation or offer.