Forklog
2024-03-04 11:07:22

ИИ научился оптимизировать работу автоматизированного склада

Исследователи из Массачусетского технологического института (MIT) обучили ИИ-модель оптимизации перемещений по складскому помещению. При поступлении заказа робот отправляется в определенную зону, берет с полки с необходимый товар и доставляет его человеку-оператору. Сотни механических помощников делают это одновременно, и если их пути пересекутся, они могут пострадать. Традиционные алгоритмы, основанные на поиске, позволяют избежать возможных столкновений, удерживая одного андроида на месте и меняя траекторию для другого. Но при увеличении их количества задача оптимизации быстро растет в геометрической прогрессии. Ученые заметили, что движущиеся роботы похожи на автомобили, пытающиеся выбрать лучший путь в переполненном центре города. Они создали модель глубокого обучения, кодирующая важную информацию о складе, включая механических грузчиков, запланированные маршруты, задачи и препятствия. Нейросеть использует полученные данные для нахождения подходящих участков склада, которые следует разгрузить. «Мы разработали новую архитектуру, которая кодирует сотни роботов относительно их траекторий, пунктов назначения и взаимодействия друг с другом», — сообщила доцент кафедры гражданского и экологического строительства MIT Кэти Ву. Помимо оптимизации перемещений по складам, данный метод глубокого обучения можно применять в других сложных задачах планирования. Например, при проектировании компьютерных чипов или прокладке труб в больших зданиях. Ранее ForkLog в формате News+ рассказал об андроидах, создаваемых для работы на заводах и складах. https://forklog.com/news/ai/bytovaya-robototehnika-uspehi-kompanij-razrabotchikov-mehanicheskih-pomoshhnikov

Get Crypto Newsletter
Read the Disclaimer : All content provided herein our website, hyperlinked sites, associated applications, forums, blogs, social media accounts and other platforms (“Site”) is for your general information only, procured from third party sources. We make no warranties of any kind in relation to our content, including but not limited to accuracy and updatedness. No part of the content that we provide constitutes financial advice, legal advice or any other form of advice meant for your specific reliance for any purpose. Any use or reliance on our content is solely at your own risk and discretion. You should conduct your own research, review, analyse and verify our content before relying on them. Trading is a highly risky activity that can lead to major losses, please therefore consult your financial advisor before making any decision. No content on our Site is meant to be a solicitation or offer.